
MICROSERVICE ARCHITECTURE WITH

PYTHON & DOCKER

Meet Muhammad Zunair

• Technical Evangelist @ Systems Limited
– Python and docker Lover

– Focused on Cloud Computing and new development technologies.

– Worked on Containerization of EAS

• Speaker
– HEC & Microsoft Academic Initiative

– Global Azure Bootcamp

– Microtechx

LinkedIn: https://www.linkedin.com/in/muhammadzunair/

GitHub: https://www.github.com/zunair-ch

Long Functions vs Short Functions

def pong():

long function implemented here

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

if name == ' main ':

pong()

def game_complete():

short function implemented here

...

def move_player(player_number):

short function implemented here

...

def move_ball():

short function implemented here

...

def check_collisions():

short function implemented here

...

def pong():

while not game_complete():

move_player(0)

move_player(1)

move_ball()

check_collisions()

if name == ' main ':

pong()

Long Modules vs Short Modules

Why it’s important?

A Typical Monolithic Python Web Application

Find this app at https://github.com/zunair-ch/flack

The Problems with Monoliths

● Codebase becomes harder to maintain and test as it growslarger

● Coupling between modules causes random bugs when changes are made

● Steep learning curve for new team members

● Deployments and upgrades require downtime

● If the service crashes, your entire site goes down

● Inefficient scaling

● Difficult to incorporate to new technologies

Traditional Solution
● scale the application by running multiple instances of the monolith

Microservices

Netflix and Amazon address these problems with a solution called

What are Microservices?

Microservice architecture is an approach to develop a single application

as a suite of small services.

A Microservices Example

This app is also real! See https://github.com/zunair-ch/microflack_admin

Monolithic vs Microservices Architecture

Benefits of Microservices

● Code complexity greatly reduced

● Service separation promotes decoupled designs that have less bugs

● There is a lot less to learn to becomeproductive

● Deployments don’t require downtime

● If a microservice crashes, the rest of the system keepsgoing

● Each microservice can be scaled individually according to itsneeds

● Services can use different tech stacks

Disadvantages of Microservices

● The complexity moves from the code to the interactions between services

● Complex database joins must be implemented by theapplication

● Deployments have a lot of moving pieces

● Lower performance when a request “pinballs” through multiple microservices

Refactoring a Monolith into Microservices

● Strategy #1: Microservices only going forward

● Strategy #2: Break pieces of functionality into microservices overtime

● Strategy #3: Refactor the entire monolith into microservices

● In all cases, a base microservices platform needs to be put in placebefore

refactoring work begins

A s of tware te ch n o log y comp any
p rov id in g op e rat in g -syste m - leve l
v i r tu a l i zat ion a ls o kn own as

Conta iners .

P ro m o te d b y co m p a ny D o c ke r I n c .

What is Docker?

Docker Containers vs VM

VM vs Containers

Docker Containers
• Docker improves the deployment of

applications with portable, self-

sufficient containers, Linux or Windows,

that can run on any cloud or on-

premises.

No more:

“It works in my dev machine!...

Why not in production?”
Now it is:

“If it works in Docker, it

works in production”

Docker Engine for Linux and Windows

Demo

The Microservices Platform

Load Balancer

● All microservices are accessed through the load balancer

● While microservices come and go, the load balancer is the“switchboard”

● Enables horizontal scaling of services

● Enables very cool tricks
○ Rolling upgrades

○ A/B testing

○ Green/Blue deployments

○ Etc.

Service Registry

● Datastore that keeps a list of running services

● Must be redundant, highly available, and fast

● Services make themselves known to the registry when theystart

● They are removed (and possibly replaced) when they end or crash

● The load balancer is dynamically reconfigured when the registrychanges

Containers

● Make services portable across host platforms

● Provide an additional layer of isolation over processes

● Allow each service to use its own dependencies

● Simplify managing of network ports

Storage

● Service registry, databases, message queues, etc. are stateful services

● It is important to make these services robust toprevent data loss

● Most storage solutions have clustering or mirroring options
○ MySQL →Galera, Aurora (AWS)

○ RabbitMQ →Native clustering and mirroring

○ Etc.

Application Microservices

● The microservices that you write are (ideally) stateless

● They can start and stop at any time, without data loss

● Horizontally scalable for free

● Python microservices can be written as simple web APIs using any framework

● Or you can use other mechanisms such as RPC to receive requests

Lifecycle of a Microservice

● On startup, the microservice registers with the service registry

● The load balancer detects the change in the registry and updates itself to

include the new microservice

● The new service starts receiving traffic from the loadbalancer

● If more than one instance of the service exist, the traffic is split among them

● The service sends “keep-alive” signals, or responds to periodic healthchecks

● When the service is stopped, or stops sending keep-alives, or fails a health

check, it is removed from the registry, and in turn from the load balancer

Service-to-Service Communication

● Outside clients connect over HTTP/REST (or maybe WebSocket)

● The service receiving the client request may need to invoke other services

● Services communicate with each other in a variety of ways
○ HTTP/REST

○ Job or message queues

○ RPC mechanisms

● Payloads exchanged between services should use well known formats
○ Pickle is not a good idea

○ JSON, msgpack, protobufs are all good

Try It Yourself!

Deploying MicroFlack to your Laptop

● Requirements
○ 4GB RAM (8GB recommended)

○ Vagrant

○ VirtualBox

○ Everything is installed in an Ubuntu 16.04 VM (Windows, Mac, Linux laptops are all OK!)

● Deployment commands:
git clone https://github.com/zunair-ch/microflack_admin cd

microflack_admin

vagrant up

vagrant ssh

vagrant halt

vagrant snapshot save clean

to create the VM or restart it after shutdown

to open a shell session on the VM

to shutdown the VM (without destroying it)

to save a snapshot with name “clean”

vagrant snapshot restore clean --no-provision # to restore the snapshot

vagrant destroy # to delete the VM

Thank You!

