@ @ python’

MICROSERVICE ARCHITECTURE WITH
PYTHON & DOCKER

@% & docker

Meet Muhammad Zunair systems

* Technical Evangelist @ Systems Limited - pgthon"
— Python and docker Lover
— Focused on Cloud Computing and new development technologies.
— Worked on Containerization of EAS - Migrosoft

[
— HEC & Microsoft Academic Initiative
— Global Azure Bootcamp
— Microtechx

LinkedIn: https://www.linkedin.com/in/muhammadzunair/
GitHub: https://www.github.com/zunair-ch

|
| |
| |
| |
| |
| |
| |
| |
' :
I
|
e Speaker I {ﬁ} :
I
| |
| |
| |
| |
| |
| |
| |
' :
I
| |

Long Functions vs Short Functions

def pong() : def game_ complete() :

def move player (player number) :

def move ball():

def check collisions():

def pong():
while not game complete() :
move_player (0)
move player (1)
move_ball ()
check collisions ()

== ' main ': if name == ' main ':
pong ()

Long Modules vs Short Modules

4 FLASKY 4 FLASKY 4 FLASKY 4 FLASKY

b static ’ i o =
: S nlaias b tests b main 4 [main
. helio oy & config.py static & _init__.py
& manage.py templates & errors.py
® _init__py & forms.py
% email.py ® views.py
® models.py static
4 [0 tests templates
® _init__py ® _init__.py
% test_basics.py

% email.py

& config.py % models.py

% manage.py 4 [T tests
® _init__py
¥ test_basics.py
& config.py
% manage.py

Why it's important?

When | wrote this code,
only God & | understood what it did.

Now...
God knows.

A Typical Monolithic Python Web Application

> database ,
messae quece l

toaa\ balawncer

Find this app athttps://github.com/zunair-ch/flack

The Problems with Monoliths

Codebase becomes harder to maintain and test as it growslarger
Coupling between modules causes random bugs when changes are made
Steep learning curve for new team members

Deployments and upgrades require downtime

If the service crashes, your entire site goes down

Inefficient scaling

Difficult to incorporate to newtechnologies

Traditional Solution

e scale the application by running multiple instances of the monolith

Netflix and Amazon address these problems with a solution called

Microservices

What are Microservices?

Microservice architecture is an approach to develop a single application
as a suite of small services.

A Microservices Example

messaqes database |

> user database '

(=
load balancer ‘l(— ers

vevoked tokens

dient ai

This app is also real! See https://github.com/zunair-ch/microflack _admin

Monolithic vs Microservices Architecture

MONOLITHIC

ARCHITECTURE MICROSERVICES ARCHITECTURE

T e

icroservic Micros Microservic

't 1 it

Benefits of Microservices

Code complexity greatly reduced

Service separation promotes decoupled designs that have less bugs
There is a lot less to learn to become productive

Deployments don’t require downtime

If a microservice crashes, the rest of the system keeps going

Each microservice can be scaled individually according to itsneeds
Services can use different tech stacks

Disadvantages of Microservices

The complexity moves from the code to the interactions between services
Complex database joins must be implemented by the application
Deployments have a lot of moving pieces

Lower performance when arequest “pinballs” through multiple microservices

Refactoring a Monolith into Microservices

Strategy #1. Microservices only going forward
Strategy #2: Break pieces of functionality into microservices overtime

Strategy #3: Refactor the entire monolith into microservices
In all cases, a base microservices platform needs to be put in placebefore

refactoring work begins

What is Docker?

Docker is an open platform that helps companies build, ship and run their
applications, anywhere.

docker

What is Docker?

A software technology company
providing operating-system-level
virtualization also known as
Containers.

Promoted by company Docker Inc.

Docker Containers vs VM

App B
App B Bins/Libs
Bins/Libs
Guest OS

Docker Engine

Hypervisor

Host OS
Host OS

Server Server

VM vs Containers

-
v
« Hn i
L B |

i TR

——
e~

- — .) ! B -
| \'\-]
" ' . |
‘ — - ’ ’ . L : heP .
'] . —— W
J ’

OPS PROBLEMNOW

Docker Containers

« Docker improves the deployment of
applications with portable, self-
sufficient containers, Linux or Windows,

that can run on any cloud or on-
premises.

No more:
“It works in my dev machine!...

Why not in production?” . -
4 th productt Now it is:
(“If it works in Docker, it

works in production”

Docker Engine for Linux and Windows

Docker Client

Windows Server

Windows Server
Container Support

Linux Container
Support (LXC)

”

Docker.exe
Examples:
docker run
docker images

Docker Remote API
Examples:

GET /images/json

POST /containers/create

The Microservices Platform

Load Balancer

All microservices are accessed through the load balancer

While microservices come and go, the load balancer is the “switchboard”
Enables horizontal scaling of services

Enables very cool tricks
o Roalling upgrades
o A/Btesting
o Green/Blue deployments
o FEtc.

Service Registry

Datastore that keeps a list of running services

Must be redundant, highly available, and fast

Services make themselves known to the registry when they start

They are removed (and possibly replaced) when they end orcrash

The load balancer is dynamically reconfigured when the registry changes

Containers

Make services portable across host platforms

Provide an additional layer of isolation over processes
Allow each service to use its own dependencies
Simplify managing of network ports

Storage

e Service registry, databases, message queues, etc. are stateful services
e Itisimportant to make these services robust toprevent data loss

e Most storage solutions have clustering or mirroring options
o MySQL —Galera, Aurora (AWS)
o RabbitMQ —Native clustering and mirroring
o Etc.

Application Microservices

The microservices that you write are (ideally) stateless

They can start and stop at any time, without dataloss

Horizontally scalable for free

Python microservices can be written as simple web APIs using any framework
Or you can use other mechanisms such as RPCto receive requests

Lifecycle of a Microservice

e On startup, the microservice registers with the service registry
The load balancer detects the change in the registry and updates itself to

include the new microservice

The new service starts receiving traffic from the loadbalancer
If more than one instance of the service exist, the traffic is split among them

The service sends “keep-alive” signals, or responds to periodic healthchecks
When the service is stopped, or stops sending keep-alives, or fails a health

check, it is removed from the registry, and in turn from the load balancer

Service-to-Service Communication

Outside clients connect over HTTP/REST (or maybe WebSocket)
The service receiving the client request may need to invoke other services

Services communicate with each other in a variety of ways
o HTTP/REST
o Job or message queues
o RPC mechanisms

e Payloads exchanged between services should use well known formats
o Pickle is not agoodidea
o JSON, msgpack, protobufs are all good

Try It Yourself!

Deploying MicroFlack to your Laptop

e Requirements

4GB RAM (8GB recommended)

Vagrant

VirtualBox

Everything is installed in an Ubuntu 16.04 VM (Windows, Mac, Linux laptops are all OK!)
e Deployment commands:

git clone https://github.com/zunair-ch/microflack admin cd

o O O O

microflack admin

vagrant up # to create the VM or restart it after shutdown
vagrant ssh # to open a shell session on the VM

vagrant halt # to shutdown the VM (without destroying it)
vagrant snapshot save clean # to save a snapshot with name “clean”

vagrant snapshot restore clean --no-provision # to restore the snapshot
vagrant destroy # to delete the VM

Thank Youl!

