
PyTest
Right Way to Test Python Code

Haroon Rashid
SEECS, NUST @haroonrashid235

About Me

Contents

● What is Software Testing?

● Why Test Code?

● Types of Testing

● Test Coverage

● Testing in Python

● Pytest and its Features

● Fixtures and parameterization

What is Software Testing?

● Evaluation of a software to make sure the specifications are met

(Software Testing - Udacity)

Why Test Code?

Testing Code increases:

● Trust

● Confidence

Why Test Code? - Continued

But…

● You can never be 100% confident

● In most cases, impossible to test entire input domain

● More you test, more confidence in the correctness of software

How many Tests to Write?

● No definitive answer

● 1000s of tests may fail to find a bug

● Smart Testing >> More and More Tests

Better Question.. How should I test it?

● Work as a Detective

● You are a bug hunter as a software tester

● Learn the Product/Software as much as possible

● Seek complexity underlying the simplicity of the code

● Try to learn How might it not work!

● Goal is to make software not work

Types of Testing

1. Unit Testing - Isolated modules e.g. method or a function

2. Integration Testing - Multiple software modules that are already unit tested

3. System Testing - Test with everything plugged together

4. Acceptance tests - Test the customer’s use case

Some other types:

● Black Box Testing

● White Box Testing

Test Coverage

● Measures Proportion of program Executed during testing

● Score Metric as a percentage

● 100% Coverage doesn’t mean that all bugs are found

Coverage Types

1. Statement Coverage - Was this statement Executed?

2. Path Coverage - Was this code path executed?

3. Decision/Branch Coverage - Was every path of decision executed?

4. Function Coverage - Was Every Function is executed

5. Synchronization Coverage - Deals with multiple threads and Parallel

Processing

Testing in Python

Several Testing Frameworks in Python:

● Unittest

● nose

● pytest

Why Pytest?

● Powerful features

● Less Boilerplate code

● Assertions are more natural

assert == ‘python’ -> pytest

self.assertEquals(‘python’) -> unittest

Pytest - Getting Started

● $ - pip install pytest

● Create a module to hold your test (e.g. test_cool_functions.py)

● Write tests inside the module

● Run tests by executing

$ - py.test [-v] test_cool_function.py

Pytest - Example

1. Code 2. Write Unit tests

3. Run the tests

Skip/Run Tests Selectively

● Selectively skip tests

@pytest.mark.skip(reason)

● Skip tests when a certain condition is met

@pytest.mark.skipif(condition, reason)

● Run all tests with a certain keyword

pytest -k keyword test_file.py

Skip/Run Tests Selectively - Continued

● Custom Markers

○ Mark tests to run on a certain operating system

@pytest.mark.windows

@pytest.mark.mac

pytest -m mac -v test_file.py

Pytest Fixtures

● Define Reusable components required by your tests

● Avoid setup and teardown modules

● Pytest combines fixtures to tests automatically

https://docs.pytest.org/en/latest/builtin.html for more info on built in fixtures

provided by pytest

https://docs.pytest.org/en/latest/builtin.html

Parameterization

● Allows to combine multiple tests into one

Code under Test No Parameterization

Parameterization

Testing for Exceptions

● pytest.raises tests for exceptions

with pytest.raises(TypeError):

‘2’ + 2

● Running above code will make test pass because we are testing for exception

Test Automation - CI

● Travis, AppVeyor and Jenkins Continuous Integration

● Third Party service that builds (and run tests) every time code is pushed

● Free for Open Source Projects

● https://travis-ci.org/

https://travis-ci.org/

Test Automation - Coveralls

● Third Party Service for keeping track of test coverage of project

● Free for open source Projects

Case Study - Stingray

https://github.com/StingraySoftware/stingray

https://github.com/StingraySoftware/stingray

ThankYou!!

@haroonrashid235

haroon.rashid235@gmail.com

