Computer Vision with Deep Learning in Python

Muhammad Zaid

Who am I?

- ➤ Graduate from FAST NUCES, Karachi
- ➤ Junior Data Analyst at <u>Love For Data</u>
- > Tech Initiative Lead at Pakistan.AI
- > Published author in International Conferences
- ➤ AI and Data science evangelist
- ➤ <u>LinkedIn</u>
- > Facebook

Agenda

- Introduction to Computer Vision for Beginners
- Deep learning for Vision
- Starting Vision with Python

What is Computer Vision?

Computer Vision is a **sub- field of AI**, and a science of making computers understand the images

Our smartest and fastest machines are still blind!

- Dr. Fei Fei Li

08	02	22	97	38	15	00	40	00	75	04	05	07	78	52	12	50	77	91	80
49	49	99	40	17	81	18	57	60	87	17	40	98	43	69	48	04	56	62	00
81	49	31	73	55	79	14	29	93	71	40	67	53	88	30	03	49	13	36	65
52	70	95	23	04	60	11	42	69	24	68	56	01	32	56	71	37	02	36	91
22	31	16	71	51	67	63	89	41	92	36	54	22	40	40	28	66	33	13	80
24	47	32	60	99	03	45	02	44	75	33	53	78	36	84	20	35	17	12	50
32	98	81	28	64	23	67	10	26	38	40	67	59	54	70	66	18	38	64	70
67	26	20	68	02	62	12	20	95	63	94	39	63	80	40	91	66	49	94	21
24	55	58	05	66	73	99	26	97	17	78	78	96	83	14	88	34	89	63	72
21	36	23	09	75	00	76	44	20	45	35	14	00	61	33	97	34	31	33	95
78	17	53	28	22	75	31	67	15	94	03	80	04	62	16	14	09	53	56	92
16	39	05	42	96	35	31	47	55	58	88	24	00	17	54	24	36	29	85	57
86	56	00	48	35	71	89	07	05	44	44	37	44	60	21	58	51	54	17	58
19	80	81	68	05	94	47	69	28	73	92	13	86	52	17	77	04	89	55	40
04	52	80	83	97	35	99	16	07	97	57	32	16	26	26	79	33	27	98	66
88	36	68	87	57	62	20	72	03	46	33	67	46	55	12	32	63	93	53	69
04	42	16	73	38	25	39	11	24	94	72	18	80	46	29	32	40	62	76	36
20	69	36	41	72	30	23	88	34	62	99	69	82	67	59	85	74	04	36	16
20	73	35	29	78	31	90	01	74	31	49	71	48	86	81	16	23	57	0.5	54
01	70	54	71	83	51	54	69	16	92	33	48	61	43	52	01	89	19	67	48

Important Computer Vision Problems

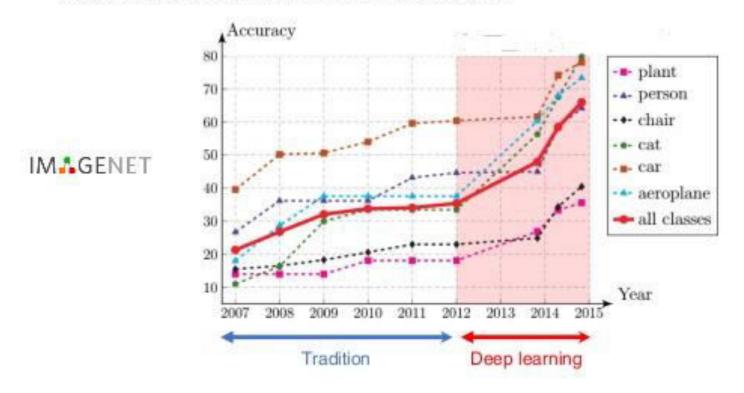
• Object Recognition => Given an image, label it!

Important Computer Vision Problems

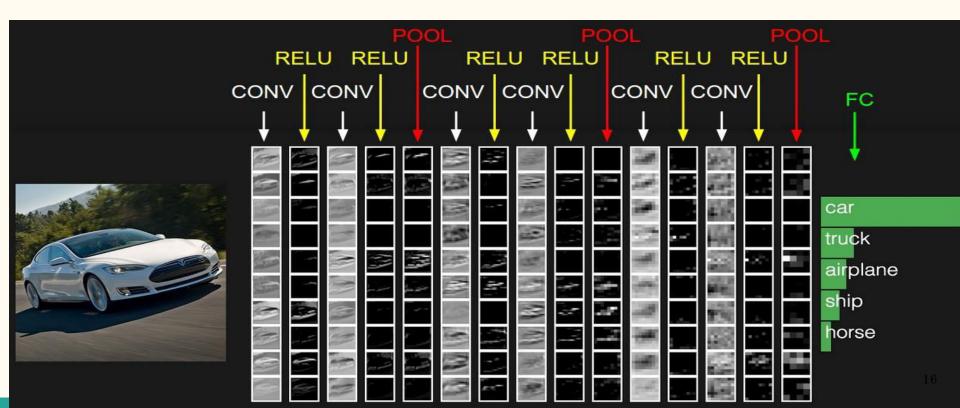
• Object Detection => Given an image, locate the objects!

Deep Learning for Computer Vision

Why Deep Learning?


> Inspired from the idea of human behavior in learning different things

➤ No one tells a child how to see, but they still do a great job in recognizing and understand images


> Humans learn through huge amount of data. A child takes one picture in every 200 milliseconds.

Traditional approach vs. Deep learning

ImageNet: 1.2 million images with 1000 object categories

Convolutional Neural Networks for Object Recognition

Python for Vision

Popular libraries for vision and Deep learning

> Open CV

> Scikit Image

> Tensorflow

> Keras

Open CV

Open source computer vision library

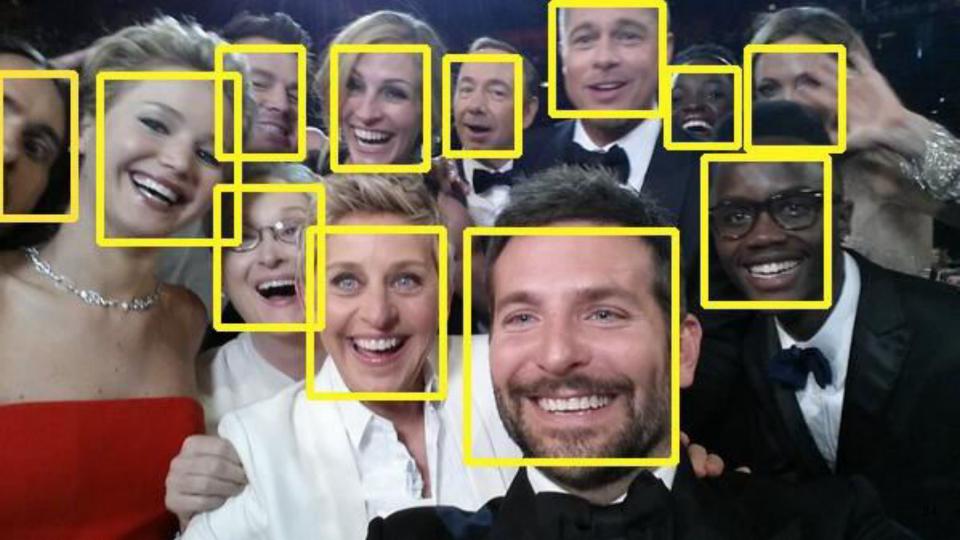
• Contains more than 2500 optimized algorithms for vision and machine learning

- Some of the example algorithms can :
 - Detect and recognize faces
 - Recognize human actions
 - Track camera movements
 - Track moving objects in videos

Open CV

• More than 47000 people in the community

• More than 14 million downloads


• Companies like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota employs this library

• Has Python, Java, C++ and MATLAB bindings

Building a face detector in 10 lines of code!

```
In [3]: import cv2, sys
In [4]: imagePath = "sample.jpg"
        cascPath = sys.argv[2]
In [ ]: faceCascade = cv2.CascadeClassifier(cascPath)
        # Read the image
        image = cv2.imread(imagePath)
        gray = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
In [ ]: faces = faceCascade.detectMultiScale(
            gray,
            scaleFactor=1.1.
            minNeighbors=5,
            minSize=(30, 30),
            flags = cv2.cv.CV HAAR SCALE IMAGE
In []: # Draw a rectangle around the faces
        for (x, y, w, h) in faces:
            cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
In [ ]: cv2.imshow("Faces found", image)
        cv2.waitKey(0)
```


Tensorflow

• Python-friendly open source library for numerical computation that makes machine learning (especially deep learning) faster and efficient

• Easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices

• Developed and maintained by Google Brain Team

Most popular deep learning library on earth

Tensorflow

An Open Source Machine Learning Framework for Everyone https://tensorflow.org

Keras

• High-level neural networks API, written in **Python** and capable of running on top of <u>TensorFlow</u>

• A very very user friendly design of API

• Strongly recommended for beginners and researchers wanted to experiment things in rapid time

• "It is basically an interface rather than a standalone machine learning library"

```
model = Sequential()
        # Adding layers!
        model.add(Conv2D(32, kernel size=(5, 5), strides=(1, 1),
                         activation='relu',
                         input shape=input shape))
        model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
        model.add(Conv2D(64, (5, 5), activation='relu'))
        model.add(MaxPooling2D(pool size=(2, 2)))
        model.add(Flatten())
        model.add(Dense(1000, activation='relu'))
        model.add(Dense(num classes, activation='softmax'))
In [ ]: model.compile(loss=keras.losses.categorical crossentropy,
                      optimizer=keras.optimizers.SGD(lr=0.01),
                      metrics=['accuracy'])
In [ ]: model.fit(x train, y train,
                  batch size=batch size,
                  epochs=epochs,
                  verbose=1,
                  validation data=(x test, y test),
                  callbacks=[history])
```

In []: # Defining the model.

Questions?

Acknowledgement

I would like to pay my humble gratitude to my mentors in the field:

- Dr. Tahir Syed
- Sadaf Suleman
- Muhammad Suleman
- Yameen Malik

Thank You!